These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice.
    Author: Huh MS, Lee SY, Park S, Lee S, Chung H, Lee S, Choi Y, Oh YK, Park JH, Jeong SY, Choi K, Kim K, Kwon IC.
    Journal: J Control Release; 2010 Jun 01; 144(2):134-43. PubMed ID: 20184928.
    Abstract:
    Here, we designed a new nano-sized siRNA carrier system composed of biocompatible/biodegradable glycol chitosan polymer (GC) and strongly positively charged polyethylenimine (PEI) polymers. In order to make a stable and tumor-homing nano-sized carrier, each polymer was modified with hydrophobic 5beta-cholanic acid, and they were simply mixed to form self-assembled GC-PEI nanoparticles (GC-PEI NPs), due to the strong hydrophobic interactions of 5beta-cholanic acids in the polymers. The freshly prepared GC-PEI NPs showed a stable nanoparticle structure (350nm) and they presented a strongly positive-charged surface (zeta potential=23.8) that is enough to complex tightly with negatively charged RFP-siRNAs, designed for inhibiting red fluorescent protein (RFP) expression. The siRNA encapsulated nanoparticles (siRNA-GC-PEI NPs) formed more compact and stable nanoparticle structures (250nm) at 1: 5 weight ratio of siRNA to GC-PEI nanoparticles. In vitro RFP expressing B16F10 tumor cell (RFP/B16F10) culture system, the siRNA-GC-PEI NPs presented a rapid time-dependent cellular uptake profile within 1h. Moreover, the internalized siRNA-GC-PEI NPs lead to specific mRNA breaks down. Furthermore, our new formulation of siRNA-GC-PEI NPs presented a significant inhibition of RFP gene expression of RFP/B16F10-bearing mice, due to their higher tumor-targeting ability. These results revealed the promising potential of GC-PEI NPs as a stable and effective nano-sized siRNA delivery system for cancer treatment.
    [Abstract] [Full Text] [Related] [New Search]