These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Suppression of phorbol ester-enhanced radiation-induced malignancy in vitro by protease inhibitors is independent of protein kinase C. Author: Su LN, Toscano WA, Kennedy AR. Journal: Biochem Biophys Res Commun; 1991 Apr 15; 176(1):18-24. PubMed ID: 2018516. Abstract: X-irradiation and the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) act in a synergistic manner to increase the yield of transformed C3H10T1/2 cells in vitro. TPA modulated both translocation from the cytosol to the plasma membrane, and down regulation of protein kinase C (PKC) after prolonged (48 h) TPA exposure. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), antipain, and soybean-derived Bowman-Birk inhibitor, protease inhibitors that suppress transformation of C3H10T1/2 cells, had no effect on these TPA-mediated alterations of PKC activity, suggesting that protease inhibitors suppress TPA-stimulated promotion in vitro via a PKC-independent pathway. Several experiments were performed to determine whether non-toxic concentrations of the PKC inhibitors, N-p-tosyl-L-lysine chloromethyl ketone (TLCK), TPCK, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), or 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine (H-7), modulated the movement of cells from a quiescent state into the cell cycle. TPCK and the combination of H-7 and W-7 lowered DNA synthesis when cells were stimulated to divide by TPA. Because other protease inhibitors that slow transformation in vitro did not have the same suppressive effect on DNA synthesis, the inhibitory pathway that suppresses carcinogenic activity is likely to be different from the suppression of DNA synthesis.[Abstract] [Full Text] [Related] [New Search]