These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of the human bile acid UDP-glucuronosyltransferase 1A3 by the farnesoid X receptor and bile acids.
    Author: Erichsen TJ, Aehlen A, Ehmer U, Kalthoff S, Manns MP, Strassburg CP.
    Journal: J Hepatol; 2010 Apr; 52(4):570-8. PubMed ID: 20189675.
    Abstract:
    BACKGROUND & AIMS: Cholestasis is a serious complication of many liver diseases leading to increased serum bile acids (BA) and their conjugates. Chenodeoxycholic (CDCA) acid is a substrate of the human hepatic UDP-glucuronosyltransferase (UGT) 1A3. UGT1A3 may, therefore, be a BA-inducible gene relevant to BA regulation. METHODS: BA and human bile were used to induce UGT1A3 in HepG2 cells. Genomic DNA was analyzed by PCR amplification and sequencing. Transcriptional regulation was studied by DNA mutagenesis, RT-PCR, luciferase reporter gene constructs and electrophoretic mobility shift assays (EMSA). RESULTS: CDCA differentially induced UGT1A3 but not UGT1A4 expression. Bile from ursodeoxycholic acid (UDCA)-treated and untreated patients differentially induced UGT1A3. A farnesoid X receptor (FXR) half-site DNA motif was identified in the UGT1A3 5' upstream region. The FXR inducer GW4064 activated UGT1A3 transcription, and electrophoretic mobility shift assays identified UGT1A3 as a FXR target gene. CONCLUSIONS: Transcriptional regulation of the human bile acid and xenobiotic UGT1A3 by its substrate CDCA and FXR is shown. CDCA glucuronidation can be controlled by feed back inhibition proceeding via the glucuronidation of CDCA. UDCA does not induce UGT1A3 transcription. Since UGT1A3 is significantly induced by xenobiotics this physiologically links xenobiotic and bile acid metabolism to cholestasis.
    [Abstract] [Full Text] [Related] [New Search]