These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of the lithiation-borylation reaction to the preparation of enantioenriched allylic boron reagents and subsequent in situ conversion into 1,2,4-trisubstituted homoallylic alcohols with complete control over all elements of stereochemistry. Author: Althaus M, Mahmood A, Suárez JR, Thomas SP, Aggarwal VK. Journal: J Am Chem Soc; 2010 Mar 24; 132(11):4025-8. PubMed ID: 20192266. Abstract: The reactions of Hoppe's lithiated carbamates with vinylboranes and boronic esters give allylic boranes/boronic esters, and subsequent addition of aldehydes provides a new route to enantioenriched homoallylic alcohols with high enantiomeric ratios and diastereomeric ratios. Specifically, reactions of sparteine-complexed lithiated carbamates with trans-alkenyl-9-BBN derivatives followed by addition of aldehydes gave (Z)-anti-homoallylic alcohols in greater than 95:5 er and 99:1 dr. However, in the special case of the methyl-substituted lithiated carbamate, diamine-free conditions were required to achieve high selectivity. Reactions of sparteine-complexed lithiated carbamates with (Z)-alkenyl pinacol boronic esters and (E)-alkenyl neopentyl boronic esters gave (E)-syn- and (E)-anti-homoallylic alcohols, respectively, in greater than 96:4 er and 98:2 dr. In these reactions, a Lewis acid (MgBr(2) or BF(3) x OEt(2)) was required to promote both the 1,2-metalate rearrangement and the addition of the intermediate allylic boronic ester to the aldehyde. This methodology provides a general route to each of the three classes of homoallylic alcohols with high selectivity.[Abstract] [Full Text] [Related] [New Search]