These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improved pyroelectric detectors for single crystal adsorption calorimetry from 100 to 350 K.
    Author: Lew W, Lytken O, Farmer JA, Crowe MC, Campbell CT.
    Journal: Rev Sci Instrum; 2010 Feb; 81(2):024102. PubMed ID: 20192507.
    Abstract:
    The adsorption of atoms and molecules on single crystal surfaces allows one to produce well-characterized atomic, molecular, or dissociated adsorbates. Microcalorimetric measurement of the resulting adsorption energies, i.e., single crystal adsorption calorimetry, allows determination of the standard enthalpies of formation of these adsorbates. Methods are described for making an improved heat detector for such measurements, which greatly improves the signal-to-noise ratio, particularly at low temperatures (down to 100 K). The heat detector is an adaptation of a previously introduced design, based on a metallized pyroelectric polymer (beta-polyvinylidene fluoride), which is pressed against the back of a single crystal during measurement but removed during sample preparation and annealing. The improvement is achieved by selectively etching the metal coating of the polymer, thus reducing the pyro- and piezoelectric noise from all nonessential regions of the polymer. We, furthermore, describe how to achieve a better thermal contact between the sample and the pyroelectric polymer, without increasing the thermal mass of the detector, resulting in significantly improved sensitivities for both 1 and 127 microm thick samples. The result is a detector which, using 1 microm samples, is approximately 40 times more sensitive at 100 K than the traditional polymer-based detector, showing a pulse-to-pulse standard deviation in the heat of adsorption of just 1.3 kJ/mol with gas pulses containing only 1.1% of a monolayer onto Pt(111), for which 1 ML (monolayer) is 1.5x10(15) species/cm(2). For measurements at 300 K, where especially pyroelectric noise is likely of less concern, the new design improves the sensitivity 3.6-fold compared to the traditional detector. These improvements are furthermore used to propose a new detector design that is able to measure heats of adsorption on samples as thick as 127 microm with reasonable sensitivity.
    [Abstract] [Full Text] [Related] [New Search]