These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Author: Scordia D, Cosentino SL, Jeffries TW. Journal: Bioresour Technol; 2010 Jul; 101(14):5358-65. PubMed ID: 20194020. Abstract: Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as effects of temperature (150-190 degrees C), reaction time (10-40 min) and oxalic acid concentration 2-8% (w/w). Time and temperature were combined into a single parameter, Severity Factor (SF) [Log(R(0))], and related to oxalic acid using a response surface methodology. Maximum total sugar yield was attained at a SF of 2.93 and 6.79% (w/w) oxalic acid, while maximum formation of sugar degradation products was observed at the highest SF (4.05) and 5% (w/w) oxalic acid. These were also the conditions for maximum simultaneous saccharification and fermentation (SSF) of the residual solids. Commercial cellulases and Saccharomyces cerevisiae attained 89.9% glucan conversion and 17.8 g/l ethanol. Pichia stipitis CBS 6054 fermented hemicellulosic hydrolysates from less severe conditions to ethanol with a yield of 0.35 (g(e)/g(s)). Maximal product yields were 69% of theoretical value and 90% of the SSF conversion efficiency for hydrolysate fermentation and SSF, respectively.[Abstract] [Full Text] [Related] [New Search]