These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeted photodynamic therapy for prostate cancer: inducing apoptosis via activation of the caspase-8/-3 cascade pathway.
    Author: Liu T, Wu LY, Choi JK, Berkman CE.
    Journal: Int J Oncol; 2010 Apr; 36(4):777-84. PubMed ID: 20198319.
    Abstract:
    The limitation of specific delivery of photosensitizers to tumor sites, represents a significant shortcoming of photodynamic therapy (PDT) application at present. Prostate-specific membrane antigen (PSMA), a validated biomarker for prostate cancer, has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. The present study focuses on the investigation of a PSMA inhibitor-conjugate of pyropheophorbide-a (Ppa-conjugate 2.1) for a targeted PDT application and the mechanism of its mediated-cell death in prostate cancer cells. Multiple fluorescence labeling methods were employed to monitor PDT-treated prostate cancer cells by confocal laser scanning microscopy. Our results demonstrate that Ppa-conjugate 2.1 mediated apoptosis is specific to PSMA+ (positive) LNCaP cells, but not PSMA- (negative) PC-3 cells. Furthermore, these results indicate that following PDT, the activation of caspase-8, -3, -9, cleavage of poly(ADP-ribose) polymerase (PARP) and DNA fragmentation is sequential. The appearance of cleaved beta-actin further supported involvement of caspase-3. Specific caspase inhibitor blocking studies reveal that the caspase-8/-3 cascade pathway plays a key role in apoptosis of LNCaP cells induced by Ppa-conjugate 2.1. The demonstrated selective targeting and efficacy of this agent suggests that targeted PDT could serve as an alternative treatment option for prostate cancer.
    [Abstract] [Full Text] [Related] [New Search]