These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection. Author: Hu W, Lu Z, Liu Y, Li CM. Journal: Langmuir; 2010 Jun 01; 26(11):8386-91. PubMed ID: 20201594. Abstract: In situ surface plasmon resonance (SPR) was used to study the assembly process of multiwalled carbon nanotubes (MWCNTs) quantitatively on an alkanethiol self-assembled monolayer (SAM) surface, showing that MWCNTs can follow the Langmuir adsorption kinetics to assemble spontaneously whereas the assembly temperature has an essential influence on the assembly kinetics and the surface distribution of MWCNTs. To further in situ investigate protein attachment on the MWCNT surface and its sensing application quantitatively, goat IgG was immobilized by three strategies: direct adsorption, covalent binding, and 1-pyrenebutanoic acid, succinimidyl ester (PBSE)-assisted attachment, of which the covalent binding approach provides the best protein loading capacity. The SPR label-free detection of anti-goat IgG demonstrates excellent performance with high sensitivity, good specificity, and rapid response in comparison to that with a plain substrate without MWCNT assembly reported in our previous work. This is contributed by the 3D MWCNT assembly matrix providing a high probe immobilization capability and superb accessibility for the target to enhance its sensing performance significantly.[Abstract] [Full Text] [Related] [New Search]