These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reverse-direction (5'-->3') synthesis of oligonucleotides containing a 3'-S-phosphorothiolate linkage and 3'-terminal 3'-thionucleosides. Author: Gaynor JW, Piperakis MM, Fisher J, Cosstick R. Journal: Org Biomol Chem; 2010 Mar 21; 8(6):1463-70. PubMed ID: 20204222. Abstract: The synthesis of oligodeoxynucleotides containing 3'-thionucleosides has been explored using a reverse-direction (5'-->3') approach, based on nucleoside monomers which contain a trityl- or dimethoxytrityl-protected 3'-thiol and a 5'-O-phosphoramidite. These monomers are relatively simple to prepare as trityl-based protecting groups were introduced selectively at a 3'-thiol in preference to a 5'-hydroxyl group. As an alternative approach, trityl group migration could be induced from the 5'-oxygen to the 3'-thiol function. 5'-->3' Synthesis of oligonucleotides gave relatively poor yields for the internal incorporation of 3'-thionucleosides [to give a 3'-S-phosphorothiolate (3'-SP) linkage] and multiple 3'-SP modifications could not be introduced by this method. However, the reverse direction approach provided an efficient route to oligonucleotides terminating with a 3'-thionucleoside. The direct synthesis of these thio-terminating oligomers has not previously been reported and the methods described are applicable to 2'-deoxy-3'-thionucleosides derived from thymine, cytosine and adenine.[Abstract] [Full Text] [Related] [New Search]