These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RAD001 offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer. Author: Wang ZG, Fukazawa T, Nishikawa T, Watanabe N, Sakurama K, Motoki T, Hatakeyama S, Omori O, Ohara T, Tanabe S, Fujiwara Y, Takaoka M, Shirakawa Y, Yamatsuji T, Tanaka N, Naomoto Y. Journal: Oncol Rep; 2010 Apr; 23(4):1167-72. PubMed ID: 20204306. Abstract: Esophageal cancer is one of the most frequently occurring cancers in the world. Targeting therapy strategy of cancer with specific inhibitors is developing and has showed promising antitumor efficacy. It is known that mTOR is an important controller of cell growth. RAD001 (everolimus) is a specific inhibitor of mTOR that can block the mTOR signaling pathway. The purposes of this study was to explore the inhibitory effects of RAD001 on mTOR signaling and the mechanism of cell growth suppression by RAD001. We examined both the expression of mTOR, p70S6K and S6 in SEG-1 esophageal cancer cells and KOB-13 normal esophageal epithelial cells and the efficacy of RAD001 against SEG-1 esophageal cancer cells. mTOR, p70S6K and S6 were overexpressed in SEG-1 esophageal cancer cells compared with KOB-13 normal esophageal epithelial cells. SEG-1 esophageal cancer cells were sensitive to RAD001. The survival rate of the cells treated with RAD001 over 0.33 microM was significantly different compared with that of control (P<0.01). RAD001 inhibited the phosphorylation of mTOR (Ser2448) and S6 (Ser240/244) in different grades and the expressions of mTOR, p70S6K and S6. As a result, RAD001 induced a dose-dependent decrease in cell proliferation, G1/S arrest and damage of cell shape. Taken together, these data showed that RAD001 can inhibit mTOR signaling and proliferation in SEG-1 esophageal cancer cells in vitro. It offers a therapeutic intervention through inhibition of mTOR as a potential strategy for esophageal cancer.[Abstract] [Full Text] [Related] [New Search]