These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concurrent inhibition of NF-kappaB, cyclooxygenase-2, and epidermal growth factor receptor leads to greater anti-tumor activity in pancreatic cancer.
    Author: Ali S, Banerjee S, Schaffert JM, El-Rayes BF, Philip PA, Sarkar FH.
    Journal: J Cell Biochem; 2010 May; 110(1):171-81. PubMed ID: 20213764.
    Abstract:
    Inactivation of survival pathways such as NF-kappaB, cyclooxygenase (COX-2), or epidermal growth factor receptor (EGFR) signaling individually may not be sufficient for the treatment of advanced pancreatic cancer (PC) as suggested by recent clinical trials. 3,3'-Diindolylmethane (B-DIM) is an inhibitor of NF-kappaB and COX-2 and is a well-known chemopreventive agent. We hypothesized that the inhibition of NF-kappaB and COX-2 by B-DIM concurrently with the inhibition of EGFR by erlotinib will potentiate the anti-tumor effects of cytotoxic drug gemcitabine, which has been tested both in vitro and in vivo. Inhibition of viable cells in seven PC cell lines treated with B-DIM, erlotinib, or gemcitabine alone or their combinations was evaluated using 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Significant inhibition in cell viability was observed in PC cells expressing high levels of COX-2, EGFR, and NF-kappaB proteins. The observed inhibition was associated with an increase in apoptosis as assessed by ELISA. A significant down-regulation in the expression of COX-2, NF-kappaB, and EGFR in BxPC-3, COLO-357, and HPAC cells was observed, suggesting that simultaneous targeting of EGFR, NF-kappaB, and COX-2 is more effective than targeting either signaling pathway separately. Our in vitro results were further supported by in vivo studies showing that B-DIM in combination with erlotinib and gemcitabine was significantly more effective than individual agents. Based on our preclinical in vitro and in vivo results, we conclude that this multi-targeted combination could be developed for the treatment of PC patients whose tumors express high levels of COX-2, EGFR, and NF-kappaB.
    [Abstract] [Full Text] [Related] [New Search]