These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid-poly(lactide-co-glycolide) nanoparticles: from fabrication to preclinical validation. Author: Mondalek FG, Ashley RA, Roth CC, Kibar Y, Shakir N, Ihnat MA, Fung KM, Grady BP, Kropp BP, Lin HK. Journal: J Biomed Mater Res A; 2010 Sep 01; 94(3):712-9. PubMed ID: 20213816. Abstract: Hyaluronic acid-poly(de-co-glycolide) nanoparticles (HA-PLGA NPs) were synthesized to stabilize the porous structure of porcine small intestinal submucosa (SIS), to improve surface biocompatibility and to enhance performance in tissue regeneration. HA-PLGA NPs were characterized for size, zeta potential, surface morphology, and HA loading. Human microvascular endothelial cells responded to HA-PLGA NPs and HA-PLGA modified SIS (HA-PLGA-SIS) with elevated cell proliferation. HA-PLGA-SIS significantly enhanced neo-vascularization in an in ovo chorioallantoic membrane angiogenesis model. The angiogenic capability of the newly fabricated HA-PLGA-SIS was tested in a canine bladder augmentation model. Urinary bladder augmentation was performed in beagle dogs following hemi-cystectomy using HA-PLGA-SIS. The regenerated bladder was harvested at 10 weeks post augmentation and vascularization was evaluated using CD31 immunohistochemical staining. Bladder regenerated with HA-PLGA-SIS had significantly higher vascular ingrowth compared to unmodified SIS. This study shows that HA-PLGA NPs may represent a new approach for modifying naturally derived SIS biomaterials in regenerative medicine.[Abstract] [Full Text] [Related] [New Search]