These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synaptic characteristics of rostral nucleus of the solitary tract neurons with input from the chorda tympani and glossopharyngeal nerves.
    Author: Wang M, Bradley RM.
    Journal: Brain Res; 2010 Apr 30; 1328():71-8. PubMed ID: 20214892.
    Abstract:
    Chorda tympani (CT) and glossopharyngeal (IXth) nerves relay taste information from anterior and posterior tongue to brainstem where they synapse with second order neurons in the rostral nucleus of solitary tract (rNST). rNST neurons monosynaptically connected to afferent gustatory input were identified both by anatomical labeling and synaptic latency measures. Anterograde tracing was used to label the CT and IXth terminal fields, and neurons surrounded by fluorescent neural profiles visualized with differential interference contrast (DIC) optics in horizontal brainstem slices. Anatomically identified neurons were patch-clamped and excitatory postsynaptic currents (EPSCs) evoked by electrically stimulating the solitary tract (ST) under GABA(A) receptor blockade. Monosynaptic connections were confirmed by measures of the standard deviation of synaptic latency (jitter). rNST neurons responded to ST stimulation with either all-or-none or graded amplitude EPSCs. Most (70%) of the rNST neurons with CT input and 30% with IX input responded with all-or-none EPSCs. The remainder of the neurons with CT and IX input responded with increasing EPSC amplitudes to greater intensity stimulus shocks. EPSCs evoked in rNST neurons by increasing shock frequency to both CT and IXth nerves resulted in reduced amplitude EPSCs characteristic of frequency-dependent synaptic depression. Our results suggest that the second order rNST neurons respond to afferent input with different patterns of EPSCs that potentially influence transmission of gustatory information. Frequency-dependent synaptic depression would act as a low pass filter important in the initial processing of gustatory derived sensory messages.
    [Abstract] [Full Text] [Related] [New Search]