These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. Author: Zauner G, Koeleman CA, Deelder AM, Wuhrer M. Journal: J Sep Sci; 2010 Mar; 33(6-7):903-10. PubMed ID: 20222081. Abstract: Analysis of protein glycosylation is essential in order to correlate certain disease types with oligosaccharide structures on proteins. Here, a method for the MS characterization of site-specific protein glycosylation is presented. Using asialofetuin and fetuin as model substances, a protocol for glycopeptide dissection was developed based on unspecific proteolysis by Proteinase K. The resulting glycopeptides were then resolved by nanoscale hydrophilic interaction liquid chromatography-electrospray multistage MS. The early elution range of O-glycopeptides was clearly separated from the late elution range of N-glycopeptides. Glycopeptides were analyzed by ion trap-MS/MS, which revealed fragmentations of glycosidic linkages and some peptide backbone cleavages; MS(3) spectra predominantly exhibited cleavages of the peptide backbone and provided essential information on the peptide sequence. The previously reported N- and O-glycan attachment sites of fetuin could be confirmed; moreover using our method, the occupation of a new, additional O-glycosylation site serine 296 was found. In conclusion, this approach appears to be a valuable technique for in-depth analysis of the site-specific N-glycosylation and O-glycosylation of individual glycoproteins.[Abstract] [Full Text] [Related] [New Search]