These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1.
    Author: Liu T, Xu F, Du X, Lai D, Liu T, Zhao Y, Huang Q, Jiang L, Huang W, Cheng W, Liu Z.
    Journal: Mol Cell Biochem; 2010 Jul; 340(1-2):265-73. PubMed ID: 20224986.
    Abstract:
    Multi-drug resistance is an important element which leads to ineffectiveness of chemotherapeutics. To identify subpopulations of cancerous prostate cells with multi-drug resistance and cancer stem-cell properties has recently become a major research interest. We identified a subpopulation from the prostate cancer cell line 22RV1, which have high surface expression of both CD117 and ABCG2. We found this subpopulation of cells termed CD117(+)/ABCG2(+) also overexpress stem cells markers such as Nanog, Oct4, Sox2, Nestin, and CD133. These cells are highly prolific and are also resistant to treatment with a variety of chemotherapeutics such as casplatin, paclitaxel, adriamycin, and methotrexate. In addition, CD117(+)/ABCG2(+) cells can readily establish tumors in vivo in a relatively short time. To investigate the mechanism of aggressive tumor growth and drug resistance, we examined the CpG islands on the ABCG2 promoter of CD117(+)/ABCG2(+) cells and found they were remarkably hypomethylated. Furthermore, chromatin immunoprecipitation assays revealed high levels of both histone 3 acetylation and H3K4 trimethylation at the CpG islands on the ABCG2 promoter. Our these data suggest that CD117(+)/ABCG2(+) cells could be reliably sorted from the human prostate cancer cell line 22RV1, and represent a valuable model for studying cancer cell physiology and multi-drug resistance. Furthermore, identification and study of these cells could have a profound impact on selection of individual treatment strategies, clinical outcome, and the design or selection of the next generation of chemotherapeutic agents.
    [Abstract] [Full Text] [Related] [New Search]