These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
    Author: Kwon OS, Park SJ, Jang J.
    Journal: Biomaterials; 2010 Jun; 31(17):4740-7. PubMed ID: 20227108.
    Abstract:
    In this study, we examined the in vitro electrochemical detection of Vascular Endothelial Growth Factor (VEGF) as cancer biomarker using p-type field-effect transistor (FET) biosensor. We demonstrated the high-performance FET sensor, which could detect ca. 400 fM of VEGF concentration, based on anti-VEGF RNA aptamer conjugated carboxylated polypyrrole nanotubes (CPNTs). The CPNTs used as high-performance transducers of this FET system were successfully fabricated by cylindrical micelle templates in a water-in-oil emulsion system. The functional carboxyl group (-COOH) was effectively incorporated into the polymer backbone during the polymerization by using pyrrole-3-carboxylic acid (P3CA) as a co-monomer. Two types of CPNTs (CPNT1: ca. 200 nm in diameter, CPNT2: ca. 120 nm in diameter) demonstrated the excellent conductivity performance in this FET system. Based on CPNTs conjugated with anti-VEGF RNA aptamer (CPNTs-aptamer), VEGF (target molecule) acts as the gate dielectrics of p-type FET sensor and specifically interacts with anti-VEGF aptamer attached to CPNT surfaces. Importantly, the VEGF detection limit of the FET sensor based on CPNT2-aptamer was found to be near 400 fM in real-time. Moreover, the CPNTs-aptamer FET sensors can be repeatedly used for various concentrations of the target molecule (VEGFs) through the washing and rinsing processes.
    [Abstract] [Full Text] [Related] [New Search]