These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and biological activity of some new 1-benzyl and 1-benzoyl-3-heterocyclic indole derivatives.
    Author: El-Sawy ER, Bassyouni FA, Abu-Bakr SH, Rady HM, Abdlla MM.
    Journal: Acta Pharm; 2010 Mar; 60(1):55-71. PubMed ID: 20228041.
    Abstract:
    Starting from 1-benzyl- (2a) and 1-benzoyl-3-bromoacetyl indoles (2b) new heterocyclic, 2-thioxoimidazolidine (4a, b), imidazolidine-2,4-dione (5a, b), pyrano(2,3-d)imida-zole (8a, b and 9a, b), 2-substituted quinoxaline (11a, b-17a, b) and triazolo(4,3-a)quinoxaline derivatives (18a, b and 19a, b) were synthesized and evaluated for their antimicrobial and anticancer activities. Antimicrobial activity screening performed with concentrations of 0.88, 0.44 and 0.22 microg mm(-2) showed that 3-(1-substituted indol-3-yl)quinoxalin-2(1H)ones (11a, b) and 2-(4-methyl piperazin-1-yl)-3-(1-substituted indol-3-yl) quinoxalines (15a, b) were the most active of all the tested compounds towards P. aeruginosa, B. cereus and S. aureus compared to the reference drugs cefotaxime and piperacillin, while 2-chloro-3-(1-substituted indol-3-yl)quinoxalines (12a, b) were the most active against C. albicans compared to the reference drug nystatin. On the other hand, 2-chloro-3-(1-benzyl indol-3-yl) quinoxaline 12a display potent efficacy against ovarian cancer xenografts in nude mice with tumor growth suppression of 100.0 +/- 0.3 %.
    [Abstract] [Full Text] [Related] [New Search]