These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mating-induced transient inhibition of responses to sex pheromone in a male moth is not mediated by octopamine or serotonin.
    Author: Barrozo RB, Jarriault D, Simeone X, Gaertner C, Gadenne C, Anton S.
    Journal: J Exp Biol; 2010 Apr; 213(Pt 7):1100-6. PubMed ID: 20228346.
    Abstract:
    In the male moth, Agrotis ipsilon, mating induces a transient inhibition of behavioural and central nervous responses to sex pheromone. Newly mated males are not attracted to sex pheromone, and the sensitivity of their antennal lobe (AL) neurons is lower than in virgin males. This rapid transient olfactory inhibition prevents them from re-mating unsuccessfully until they have refilled their sex glands. We hypothesized that this olfactory 'switch off' might be controlled by neuromodulators such as biogenic amines. To test our hypothesis, we studied the effects of octopamine (OA) and serotonin (5-hydroxytryptamine, 5-HT) on the coding properties of pheromone-sensitive AL neurons in virgin and newly mated males. We show that AL neuron sensitivity increased in newly mated males after injection of OA or 5-HT, but only OA treatment affected certain response characteristics of AL neurons in virgin males. Whereas all measured AL neuron response characteristics were different between virgin and newly mated males, amine treatment in newly mated males restored only the latency and spike frequency, but not the duration of excitatory and inhibitory phases, which were initially found in virgin males. Additionally, we investigated the behavioural effects of OA and 5-HT treatments in virgin and mated males. Although OA and 5-HT enhanced the general flight activity of newly mated males, amine treatments did not restore the behavioural pheromone response of mated moths. Altogether, these results show that, although biogenic amines modulate the olfactory system in moths, OA and 5-HT are probably not involved in the post-mating inhibition of responses to sex pheromone in A. ipsilon males.
    [Abstract] [Full Text] [Related] [New Search]