These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-beta1 expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. Author: Ryu JM, Lee MY, Yun SP, Han HJ. Journal: J Cell Physiol; 2010 Jul; 224(1):59-70. PubMed ID: 20232305. Abstract: The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill-defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D-glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [(3)H]-thymidine incorporation and cell-cycle regulatory protein expression levels compared with 5 mM D-glucose or 25 mM L-glucose. In addition, high glucose increased transforming growth factor-beta1 (TGF-beta(1)) mRNA and protein expression levels. High glucose-induced cell-cycle regulatory protein expression levels and [(3)H]-thymidine incorporation, which were inhibited by TGF-beta(1) siRNA transfection and TGF-beta(1) neutralizing antibody treatment. High glucose-induced phosphorylation of protein kinase C (PKC), p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time-dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10(-6) M; bisindolylmaleimide I, 10(-6) M), LY 294002 (PI3 kinase inhibitor, 10(-6) M), Akt inhibitor (10(-5) M), PD 98059 (p44/42 MAPKs inhibitor, 10(-5) M), SB 203580 (p38 MAPK inhibitor, 10(-6) M), and rapamycin (mTOR inhibitor, 10(-8) M) blocked the high glucose-induced cellular proliferation and TGF-beta(1) protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF-beta(1) expression via Ca(2+)/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways.[Abstract] [Full Text] [Related] [New Search]