These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pluripotent plasticity of stem cells and liver repopulation.
    Author: Gennero L, Roos MA, Sperber K, Denysenko T, Bernabei P, Calisti GF, Papotti M, Cappia S, Pagni R, Aimo G, Mengozzi G, Cavallo G, Reguzzi S, Pescarmona GP, Ponzetto A.
    Journal: Cell Biochem Funct; 2010 Apr; 28(3):178-89. PubMed ID: 20232487.
    Abstract:
    Different types of stem cells have a role in liver regeneration or fibrous repair during and after several liver diseases. Otherwise, the origin of hepatic and/or extra-hepatic stem cells in reactive liver repopulation is under controversy. The ability of the human body to self-repair and replace the cells and tissues of some organs is often evident. It has been estimated that complete renewal of liver tissue takes place in about a year. Replacement of lost liver tissues is accomplished by proliferation of mature hepatocytes, hepatic oval stem cells differentiation, and sinusoidal cells as support. Hepatic oval cells display a distinct phenotype and have been shown to be a bipotential progenitor of two types of epithelial cells found in the liver, hepatocytes, and bile ductular cells. In gastroenterology and hepatology, the first attempts to translate stem cell basic research into novel therapeutic strategies have been made for the treatment of several disorders, such as inflammatory bowel diseases, diabetes mellitus, celiachy, and acute or chronic hepatopaties. In the future, pluripotent plasticity of stem cells will open a variety of clinical application strategies for the treatment of tissue injuries, degenerated organs. The promise of liver stem cells lie in their potential to provide a continuous and readily available source of liver cells that can be used for gene therapy, cell transplant, bio-artificial liver-assisted devices, drug toxicology testing, and use as an in vitro model to understand the developmental biology of the liver.
    [Abstract] [Full Text] [Related] [New Search]