These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria.
    Author: Miron J.
    Journal: J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098.
    Abstract:
    The defined ruminal bacterial strains Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD1, Ruminococcus albus 7, Butyrivibrio fibrisolvens D1, and Bacteroides ruminicola GA33 were grown, in monocultures or as combinations of pair strains, on isolated lucerne cell-walls (CW) as the sole carbohydrate substrate. Fibrobacter succinogenes S85 was the dominant strain determining extent of CW hydrolysis in all combinations with S85. The hydrolysis of cellulose, xylan, hemicellulose side-sugars, and total CW monosaccharides by pure S85 were: 58.8, 47.3, 66.9 and 57.0%, respectively. The strains combination S85 plus D1 comprised the highest complementary effect, increasing significantly the hydrolysis of cellulose and total CW monosaccharides by 16% and 13%, respectively, above the values obtained by pure S85. This complementation was expressed also in growth pattern of bacteria. The monocultures of FD1, D1 and GA33 had very little hydrolytic effect on lucerne cellulose, but higher effects on xylan and hemicellulose side-sugars. The combinations D1 plus GA33 and 7 plus GA33 were complementary in the hydrolysis of all CW polysaccharides. The combinations FD1 plus D1, FD1 plus GA33, and 7 plus D1 were complementary only with respect to hemicellulose hydrolysis. On the other hand, the cellulolytic combinations S85 plus FD1, S85 plus 7 and FD1 plus 7 demonstrated negative interactions in lucerne CW polysaccharides hydrolysis. Under scanning electron microscopy (SEM), S85 comprised the most dense layer of bacterial cell mass attached to and colonized on CW particles. The cell surface topology of the cellulolytic strains S85, FD1 and 7 attached to CW particles was specified by a coat of characteristic protuberant structures.
    [Abstract] [Full Text] [Related] [New Search]