These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Frequency resolution for diotic and dichotic listening conditions compared using the bandlimiting measure and a modified bandlimiting measure. Author: Cokely JA, Hall JW. Journal: J Acoust Soc Am; 1991 Mar; 89(3):1331-9. PubMed ID: 2030220. Abstract: Two experiments were performed that examined the relation between frequency selectivity for diotic and dichotic stimuli. Subjects were eight normal-hearing listeners. In each experiment, a 500-Hz pure tone of 400-ms duration was presented in continuous noise. In the diotic listening conditions, a signal and noise were presented binaurally with no interaural differences (So and No, respectively). In the dichotic listening conditions, the signal or noise at one ear was 180 degrees out-of-phase relative to the respective stimulus at the other ear (S pi and N pi, respectively). The first experiment examined frequency selectivity using the bandlimiting measure. Here, signal thresholds were determined as a function of masker bandwidth (50, 100, 250, 500, and 1000 Hz) for SoNo, S pi No, and SoN pi listening conditions. The second experiment used a modified bandlimiting measure. Here, signal thresholds (So and S pi) were determined with a relatively narrow No band of masker energy (50 Hz wide) centered about the signal. Then, a second No narrow-band masker (30 Hz wide) was added at another frequency region, and signal thresholds were reestablished. The results of the two experiments indicated that listeners process a wider band of frequencies when resolving dichotic stimuli than when resolving diotic or monotic stimuli. The results also indicated that the bandlimiting measure may underestimate the spectral band processed upon dichotic stimulation. Results are interpreted in terms of an across-ear and across-frequency processing of waveform amplitude envelope.[Abstract] [Full Text] [Related] [New Search]