These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Profile of eicosanoid generation in aspirin-intolerant asthma and anaphylaxis assessed by new biomarkers.
    Author: Higashi N, Mita H, Ono E, Fukutomi Y, Yamaguchi H, Kajiwara K, Tanimoto H, Sekiya K, Akiyama K, Taniguchi M.
    Journal: J Allergy Clin Immunol; 2010 May; 125(5):1084-1091.e6. PubMed ID: 20304469.
    Abstract:
    BACKGROUND: It has recently demonstrated that a free radical-mediated pathway generates prostaglandins (PGs) and the corresponding prostaglandin enantiomers (ent-PGs). Aspirin-intolerant asthma and anaphylaxis accompany PGD(2) overproduction, possibly associated with mast cell activation via the COX pathway. However, free radical-mediated PG generation in the pathophysiology of these diseases, which can be demonstrated by measuring urinary ent-PGF(2)alpha, has not been reported. OBJECTIVES: To evaluate the characteristic profile of eicosanoid generation via the COX and/or free radical-mediated pathway underlying aspirin-intolerant asthma and anaphylaxis. METHODS: A comparative group analysis consisted of asthma (n = 17) and anaphylaxis (n = 8, none with aspirin-induced anaphylaxis) cases. Urinary eicosanoid concentrations were quantified as follows: 2,3-dinor-9alpha,11beta-PGF(2) by gas chromatography-mass spectrometry; leukotriene E(4), 9alpha,11beta-PGF(2), and PGs by enzyme immunoassay. RESULTS: 2,3-Dinor-9alpha,11beta-PGF(2) is a more predominant PGD(2) metabolite in urine than 9alpha,11beta-PGF(2). At baseline, the aspirin-intolerant asthma group (n = 10) had significantly higher leukotriene E(4) and lower PGE(2) concentrations in urine than the aspirin-tolerant asthma group. During the reaction, the urinary concentrations of leukotriene E(4) and PGD(2) metabolites correlatively increased, but with markedly different patterns of the mediator release, in the aspirin-intolerant asthma group and the anaphylaxis group, respectively. The urinary PGD(2) metabolites and primary PGs were significantly decreased in the aspirin-tolerant asthma group. Urinary ent-PGF(2)alpha concentrations were significantly increased in the anaphylaxis group but not the aspirin-intolerant asthma group. CONCLUSIONS: When assessed by urinary 2,3-dinor-9alpha,11beta-PGF(2), PGD(2) overproduction during aspirin-intolerant bronchoconstriction was clearly identified, regardless of COX inhibition. It is evident that free radical-mediated PG generation is involved in the pathophysiology of anaphylaxis.
    [Abstract] [Full Text] [Related] [New Search]