These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ionic activities of the inner ear fluid and ionic permeabilities of the cochlear duct in endolymphatic hydrops of the guinea pig.
    Author: Ikeda K, Morizono T.
    Journal: Hear Res; 1991 Feb; 51(2):185-92. PubMed ID: 2032956.
    Abstract:
    Ionic activities (K+, Na+, and Cl-) of the perilymph and endolymph of the basal turn were measured using ion-selective microelectrodes in experimentally induced endolymphatic hydrops of the guinea pig. Three months following the obstruction of the endolymphatic duct and sac, the endocochlear potential (EP) of hydroptic ears was measured at 59.7 +/- 9.6 mV (N = 12) which was significantly lower than the EP of the contralateral control ears (84.4 +/- 2.8 mV, N = 12). A paired t-test (P greater than 0.05) showed no significant differences of ion concentrations of the inner ear fluid between the hydroptic and contralateral ears. Ion permeabilities of the cochlear duct following anoxia were calculated according to the Nernst-Planck equation. Comparing hydroptic and normal ears following anoxia, a statistically significant decrease was observed in the permeability coefficients for K+. Similarly, K+ conductance was significantly lower in the hydroptic ears than in the normal ears. Total conductance of the cochlear duct, defined as the sum of each ion conductance, was 0.560 siemens in the normal ears and 0.217 siemens in the hydroptic ears. On the basis of the Goldman-Hodgkin-Katz equation, preexisting negative EP in the normal state was calculated to be -24.5 mV in normal ears and -21.4 mV in hydroptic ears. Therefore, the positive component of the EP was 108.9 mV in normal ears and 81.1 mV in hydroptic ears. These findings suggest that the pathophysiology of hydrops involves changes in K+ permeability and the inhibition of the electrogenic transport processes.
    [Abstract] [Full Text] [Related] [New Search]