These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and functional characterization of a new acidic PLA(2) Ba SpII RP4 of the Bothrops alternatus snake venom from Argentina.
    Author: Garcia Denegri ME, Acosta OC, Huancahuire-Vega S, Martins-de-Souza D, Marangoni S, Maruñak SL, Teibler GP, Leiva LC, Ponce-Soto LA.
    Journal: Toxicon; 2010 Aug 01; 56(1):64-74. PubMed ID: 20331996.
    Abstract:
    An acidic protein with phospholipase A(2) activity was purified to homogeneity from the venom of the Northeast Argentinian viperid Bothrops alternatus by two chromatographic steps: a conventional gel filtration on Sephadex G-75 and reversed phase on C18 HPLC column. A molecular mass of 14185.48 Da was determined by mass spectrometry, displaying a homodimer conformation. The kinetic assay demonstrated a catalytically active phospholipase A(2) in correspondence with Asp49 PLA(2) group. The enzyme designated Ba SpII RP4 contains an amino acid composition of 121 residues and a calculated theoretical pI value of 4.88. Amino acid sequence alignments with other Bothrops PLA(2) revealed a high degree of homology sequence (90-56%). Ba SpII RP4 did not show myotoxic activity upon muscular fibers at doses up to 100 microg i.m. route injection or lethal response when it was i.p. injected at the hightest dose of 200 microg. This toxin generates slight biological activities like paw edema inflammation and a delay in the clotting time, although Ba SpII RP4 exhibited catalytic activity. The primary amino acid sequence, determined a quadruple-time of flight (Q-TOF) hybrid mass spectrometer Q-TOF Ultima from Micromass (Manchester, UK) equipped with a nano Zspray source operating in a positive ion mode and tandem mass spectrum, an ESI/MS mass spectrum (TOF MS mode) "de novo amino acid sequencing", also provides more database about the small group of the non-myotoxic PLA(2)s isolated up to the present.
    [Abstract] [Full Text] [Related] [New Search]