These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of arbitrary and mean transfer of dental casts to the articulator on centric occlusal errors. Author: Morneburg TR, Pröschel PA. Journal: Clin Oral Investig; 2011 Jun; 15(3):427-34. PubMed ID: 20336474. Abstract: When fabricating dental restorations, casts are usually transferred to the articulator based on arbitrary hinge axes or mean values instead of true hinge axis points. Using arbitrary hinge axis points or mean values can lead to occlusal errors if the vertical relation is changed in the articulator (e.g., when a centric record is used). This study predicted the probability of occlusal errors occurring in a group of subjects when casts are mounted based on arbitrary hinge axis points or mean values. In 57 healthy volunteers, true hinge axis points, arbitrary hinge axis points, right infraorbital point, maxillary incisal point, and the palatal cusps of the second molars were determined. Mean hinge axis points were established based on Balkwill angles between 17° and 25°. Occlusal errors evoked by cast mounting in relation to arbitrary or mean axes compared to true hinge axes were calculated. Errors were determined for vertical relation settings of 2 and 4 mm. With 2 mm vertical relation, occlusal errors ≥340 µm occurred with a 10% probability with arbitrary hinge axis mounting. At the same probability level, the error increased moderately to ≥440 µm with mean value mounting and a Balkwill angle of 17°. With a Balkwill angle of 25° occlusal errors ≥1,120 µm occurred with 10% probability. Occlusal errors increased considerably with a vertical relation setting of 4 mm. If vertical relation shall be altered, a transfer of the casts according to arbitrary hinge axes is recommended. If casts are transferred according to mean values, errors are bigger depending on the articulator used.[Abstract] [Full Text] [Related] [New Search]