These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deletion analysis of brome mosaic virus 2a protein: effects on RNA replication and systemic spread. Author: Traynor P, Young BM, Ahlquist P. Journal: J Virol; 1991 Jun; 65(6):2807-15. PubMed ID: 2033655. Abstract: Brome mosaic virus (BMV) genomic RNA2 encodes the 94-kDa 2a protein, which is one of two BMV nonstructural proteins required for RNA replication and subgenomic mRNA transcription. 2a contains a central polymeraselike region, which has extensive sequence similarity with the Sindbis virus nsP4 and tobacco mosaic virus (TMV) 183-kDa replication proteins, and also contains N- and C-terminal flanking segments without counterparts in the Sindbis virus and TMV nonstructural proteins. To further investigate the roles of the central and flanking segments in 2a, we have constructed a series of deletion and frameshift mutants in a biologically active BMV RNA2 cDNA clone and tested their ability to support viral RNA replication in barley protoplasts and systemic infection in whole barley plants. The entire 125-amino-acid C-terminal segment following the polymeraselike region was dispensable for RNA replication and transcription. Within the 200-amino-acid N-terminal flanking segment, deletion of the first 50 residues dramatically reduced genomic and subgenomic RNA accumulation, and deletion of 100 or more residues abolished detectable RNA synthesis. All mutations removing residues from the central polymeraselike domain also blocked RNA replication in trans. Sequences required in cis for RNA2 replication or stability were found to occur within the first 300 nucleotides of the 2a coding region. In whole barley plants, systemic infection was inhibited even by 2a deletions that supported strong RNA replication in protoplasts. Some replication-competent 2a variants failed to spread to uninoculated leaves, while other showed 10- to 500-fold-reduced virus yield in both inoculated and uninoculated leaves. These reductions were not due to any defects in RNA2 encapsidation.[Abstract] [Full Text] [Related] [New Search]