These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low levels of mutant ubiquitin are degraded by the proteasome in vivo. Author: van Tijn P, Verhage MC, Hobo B, van Leeuwen FW, Fischer DF. Journal: J Neurosci Res; 2010 Aug 15; 88(11):2325-37. PubMed ID: 20336771. Abstract: The ubiquitin-proteasome system fulfills a pivotal role in regulating intracellular protein turnover. Impairment of this system is implicated in the pathogenesis of neurodegenerative diseases characterized by ubiquitin- containing proteinaceous deposits. UBB(+1), a mutant ubiquitin, is one of the proteins accumulating in the neuropathological hallmarks of tauopathies, including Alzheimer's disease, and polyglutamine diseases. In vitro, UBB(+1) properties shift from a proteasomal ubiquitin-fusion degradation substrate at low expression levels to a proteasome inhibitor at high expression levels. Here we report on a novel transgenic mouse line (line 6663) expressing low levels of neuronal UBB(+1). In these mice, UBB(+1) protein is scarcely detectable in the neuronal cell population. Accumulation of UBB(+1) commences only after intracranial infusion of the proteasome inhibitors lactacystin or MG262, showing that, at these low expression levels, the UBB(+1) protein is a substrate for proteasomal degradation in vivo. In addition, accumulation of the protein serves as a reporter for proteasome inhibition. These findings strengthen our proposition that, in healthy brain, UBB(+1) is continuously degraded and disease-related UBB(+1) accumulation serves as an endogenous marker for proteasomal dysfunction. This novel transgenic line can give more insight into the intrinsic properties of UBB(+1) and its role in neurodegenerative disease.[Abstract] [Full Text] [Related] [New Search]