These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression and purification of recombinant human alpha1-proteinase inhibitor and its single amino acid substituted variants in Escherichia coli for enhanced stability and biological activity. Author: Agarwal S, Jha S, Sanyal I, Amla DV. Journal: J Biotechnol; 2010 May 03; 147(1):64-72. PubMed ID: 20346993. Abstract: Human alpha(1)-proteinase inhibitor (alpha(1)-PI) is the most abundant protease inhibitor found in the blood and expression of biologically active recombinant alpha(1)-PI has great potential in therapeutic applications. We report here the expression of a synthetic alpha(1)-PI gene and its variants in Escherichia coli. Modified alpha(1)-PI gene and its single amino acid variants were cloned in pMAL-c2X vector, which allowed expression of recombinant protein(s) as a fusion of maltose-binding protein (MBP) with factor Xa protease recognition site between the fusion partners. The synthetic gene(s) were expressed in different E. coli strains and maximum expression of recombinant alpha(1)-PI and variants up to 24% of total soluble protein (TSP) was achieved with engineered strain carrying extra copies of tRNAs for rare codons. Recombinant alpha(1)-PI protein(s) were purified by amylose affinity chromatography with high homogeneity and overall yield of about 7-9 mg l(-1) of bacterial culture (approximately 5.2 g wet cell mass). E. coli expressed recombinant alpha(1)-PI showed specific anti-elastase activity and appeared as a single band of approximately 45.0 kDa on SDS-PAGE. Primary structure of purified protein and integrity of N-terminus has been verified by mass spectrometric analysis. Recombinant alpha(1)-PI expressed in E. coli was fully intact having molecular mass similar to native unglycosylated protein purified from human plasma. Increased thermostability and specific activities of purified alpha(1)-PI variant proteins confirmed the stabilizing effect of incorporated mutations. Our results demonstrate efficient expression and purification of stable and biologically active alpha(1)-PI and its variants in E. coli for further therapeutic applications.[Abstract] [Full Text] [Related] [New Search]