These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CH-directed anion-pi interactions in the crystals of pentafluorobenzyl-substituted ammonium and pyridinium salts.
    Author: Albrecht M, Müller M, Mergel O, Rissanen K, Valkonen A.
    Journal: Chemistry; 2010 May 03; 16(17):5062-9. PubMed ID: 20349467.
    Abstract:
    Simple pentafluorobenzyl-substituted ammonium and pyridinium salts with different anions can be easily obtained by treatment of the parent amine or pyridine with the respective pentafluorobenzyl halide. Hexafluorophosphate is introduced as the anion by salt metathesis. In the case of the ammonium salt 4, water co-crystallisation seems to suppress effective anion-pi interactions of bromide with the electron-deficient aromatic system, whereas with salts 5 and 6 such interactions are observed despite the presence of water. However, due to asymmetric hydrogen-bonding interactions with ammonium side chains, the anion of 5 is located close to the rim of the pentafluorophenyl group (eta(1) interaction). In 6 the CH-anion hydrogen bonding is more symmetric and fixes the anion on top of the ring (eta(6)). A similar structure-controlling effect is observed in case of the 1,4-diazabicyclo[2.2.2]octane derivatives 7. Here the position of the anion (Cl, Br, I) is shifted according to the length of the weak CH-halide interaction. The hexafluorophosphate 7 d reveals that this "non-coordinating" anion can be located on top of an aromatic pi system. In the methyl-substituted pyridinium salts 9 and 10 different locations of the bromide anions with respect to the pi system are observed. This is due to different conformations of the mono- versus disubstituted pyridine, which leads to different directions of the weak, but structurally important, H(Me)-Br bonds.
    [Abstract] [Full Text] [Related] [New Search]