These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced water absorption of wheat gluten by hydrothermal treatment followed by microbial transglutaminase reaction. Author: Liu S, Zhang D, Liu L, Wang M, Du G, Chen J. Journal: J Sci Food Agric; 2010 Mar 15; 90(4):658-63. PubMed ID: 20355095. Abstract: BACKGROUND: The water absorption of wheat gluten plays an important role in the weight, volume and form ratio of the breads. In this paper, hydrothermal treatment and microbial transglutaminase (MTGase) modification were combined to improve the water absorption ratio (WAR) of wheat gluten. To understand the increases in WAR, the changes in MTGase reaction after gluten hydrothermal treatment were also investigated. RESULTS: The sole hydrothermal treatment improved the WAR of gluten. The gluten treated at 100 degrees C for 30 min exhibited the highest WAR value (2.03 g g(-1) gluten) while the WAR of the control without hydrothermal treatment was 1.5 g g(-1) gluten. When gluten was exposed to 90 degrees C for 30 min followed by incubation with MTGase for 5 h, its WAR reached 2.48 g g(-1) gluten. In contrast to control gluten, the surface hydrophobicity of the gluten preheated at 90 degrees C for 30 min increased and fluctuated in a different way during the following MTGase reaction. Meantime, the trend in the amount of soluble protein of preheated gluten was also changed in the progress of MTGase reaction. CONCLUSION: Hydrothermal treatment followed by MTGase reaction is an efficient approach to improve the WAR of wheat gluten. The analysis of catalytic process, including determination of ammonia, gluten surface hydrophobicity, soluble protein and SDS-PAGE, suggested that hydrothermal pretreatment accelerated the cross-linking reaction and may alter the ratio of gluten deamidation catalysed by MTGase, which induced an increase in the WAR.[Abstract] [Full Text] [Related] [New Search]