These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. Author: Lin J, Ding B, Yu J. Journal: ACS Appl Mater Interfaces; 2010 Feb; 2(2):521-8. PubMed ID: 20356200. Abstract: A direct approach for fabricating nanoporous polymer fibers via electrospinning has been demonstrated. Polystyrene (PS) fibers with micro- and nanoporous structures both in the core and/or on the fiber surfaces were electrospun in a single process by varying solvent compositions and solution concentrations of the PS solutions. The porous structures of the fibrous mats were characterized by field emission scanning electron microscopy and Brunauer-Emmett-Teller measurements to confirm that they could be accurately controlled by tuning vapor pressure of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) solvent mixtures and PS concentrations in the solutions. As the solution concentration decreased, the average fiber diameter decreased, whereas the bead density increased dramatically to show a beads-on-string morphology. Both the specific surface area and pore volume of the fibrous mats showed a unimodal distributions centered at 1/3 THF /DMF mix ratio. Fibers formed from 5 wt % PS in the 1/3 THF and DMF mixtures had the largest specific surface area of 54.92 m(2) g(-1) and a pore volume of 0.318 cm(3)g(-1), respectively.[Abstract] [Full Text] [Related] [New Search]