These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. Author: Yang J, Zhou W, Cheng CH, Lee JY, Liu Z. Journal: ACS Appl Mater Interfaces; 2010 Jan; 2(1):119-26. PubMed ID: 20356228. Abstract: The activity and selectivity of carbon-supported Pt-decorated PdFe nanoparticles in the oxygen reduction reaction (ORR) were investigated in the presence and absence of methanol. The Pt-decorated PdFe nanoparticles, which consist of a PdPt surface and a PdFe interior, were prepared by the galvanic reaction between PdFe/C alloy nanoparticles and PtCl4(2-) in aqueous solution. The presence of a Pt-enriched surface after the replacement reaction was independently confirmed by several microstructural characterization techniques and cyclic voltammetry. The catalyst with such heterogeneous architecture is catalytically more active than a bulk PdFePt alloy catalyst with the same overall composition. The observed enhancements in catalyst performance can be attributed to the lattice strain effect between the shell and core components. The Pt-decorated PdFe (PdFe@PdPt/C) catalyst also compares favorably with a commercial Pt/C catalyst with four times as much Pt in terms of ORR activity, cost, and methanol tolerance.[Abstract] [Full Text] [Related] [New Search]