These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin and glucagon in prevention of hypoglycemia during exercise in humans.
    Author: Hirsch IB, Marker JC, Smith LJ, Spina RJ, Parvin CA, Holloszy JO, Cryer PE.
    Journal: Am J Physiol; 1991 May; 260(5 Pt 1):E695-704. PubMed ID: 2035626.
    Abstract:
    To assess the roles of decrements in insulin and increments in glucagon in the prevention of hypoglycemia during moderate exercise (approximately 60% peak O2 consumption for 60 min), normal young men were studied during somatostatin infusions with insulin and glucagon infused to 1) hold insulin and glucagon levels constant, 2) decrease insulin, 3) increase glucagon, and 4) decrease insulin and increase glucagon during exercise. In contrast to a comparison study (saline infusion), when insulin and glucagon were held constant, glucose production did not increase and plasma glucose decreased from 5.5 +/- 0.2 to 3.4 +/- 0.2 mmol/l (P less than 0.001) initially during exercise. Notably, plasma glucose then plateaued and was 3.3 +/- 0.2 mmol/l at the end of exercise. This decrease was at most only delayed when either insulin was decreased or glucagon was increased independently. However, when insulin was decreased and glucagon was increased simultaneously, there was an initial increase in glucose production, and the glucose level was 4.5 +/- 0.2 mmol/l at 60 min, a value not different from that in the comparison study. Thus we conclude that both decrements in insulin and increments in glucagon play important roles in the prevention of hypoglycemia during exercise and do so by signaling increments in glucose production. However, since hypoglycemia did not develop during exercise when changes in insulin and glucagon were prevented, an additional counterregulatory factor, such as epinephrine, must be involved in the prevention of hypoglycemia during exercise, at least when the primary factors, insulin and glucagon, are inoperative.
    [Abstract] [Full Text] [Related] [New Search]