These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements.
    Author: Ferrari L, Kaufmann J, Winnefeld F, Plank J.
    Journal: J Colloid Interface Sci; 2010 Jul 01; 347(1):15-24. PubMed ID: 20356605.
    Abstract:
    Polyelectrolyte-based dispersants are commonly used in a wide range of industrial applications to provide specific workability to colloidal suspensions. Their working mechanism is based on adsorption onto the surfaces of the suspended particles. The adsorbed polymer layer can exercise an electrostatic and/or a steric effect which is responsible for achieving dispersion. This study is focused on the dispersion forces induced by polycarboxylate ether-based superplasticizers (PCEs) commonly used in concrete. They are investigated by atomic force microscopy (AFM) applying standard silicon nitride tips exposed to solutions with different ionic compositions in a wet cell. Adsorption isotherms and zeta potential analysis were performed to characterize polymer displacement in the AFM system on nonreactive model substrates (quartz, mica, calcite, and magnesium oxide) in order to avoid the complexity of cement hydration products. The results show that PCE is strongly adsorbed by positively charged materials. This fact reveals that, being silicon nitride naturally positively charged, in most cases the superplasticizer adsorbs preferably on the silicon nitride tip than on the AFM substrate. However, the force-distance curves displayed repulsive interactions between tip and substrates even when polymer was poorly adsorbed on both. These observations allow us to conclude that the dispersion due to PCE strongly depends on the particle charge. It differs between colloids adsorbing and not adsorbing PCE, and leads to different forces acting between the particles.
    [Abstract] [Full Text] [Related] [New Search]