These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Treatment of Cr( VI) in deoxygenated simulated groundwater using nanoscale zero-valent iron].
    Author: Wu J, Tian XJ, Wang J, Jing CY.
    Journal: Huan Jing Ke Xue; 2010 Mar; 31(3):645-52. PubMed ID: 20358821.
    Abstract:
    Laboratory experiments and theoretical modeling studies were performed to investigate the mechanisms of Cr( VI) removal from deoxygenated simulated groundwater using nanoscale zero-valent iron, and to evaluate influencing factors and kinetics based on zeta potential, redox potential, ferrous concentrations, and the pe-pH diagram of Fe-Cr-H2O system. Experimental results demonstrate that the removal efficiency of Cr(VI) decreases with the increasing Cr( VI)/Fe mass ratio. When the Cr(VI)/Fe mass ratios are 0.025, 0.050, 0.075, and 0.100, the corresponding Cr(VI) removal rates are 100.0%, 85.6%, 72.7% and 39.6%, respectively. The Cr( VI) removal is favorable at acidic pH with fixed Cr(VI)/Fe mass ratio of 0.100. When pH are 3.0, 5.0, 7.0, 9.0 and 11.0, the Cr(VI) removal rates are 73.4%, 57.6%, 39.6%, 44.1%, and 41.2%, accordingly. The Cr(VI) removal follows the pseudo second-order kinetics. When pH is 7.0 and Cr(VI)/nZVI mass ratio is 0.025, the rate of Cr(VI) removal is the highest with rate constant at 9.76 x 10(-3) g x (mg x min)(-1). The conversion from Cr2O7(2-) to Cr3+ should be instantaneous when Cr2O7(2-) is absorbed on the surface of Fe. The Cr(VI) was reduced to Cr(III), which was subsequently incorporated into the FeOOH shell and formed a Cr-Fe film. The film once formed could further inhibit the electron transfer between Cr2O7(2-) and Fe. Then Cr(V) removal was primary controlled by the adsorption process.
    [Abstract] [Full Text] [Related] [New Search]