These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of solvent composition on transformation of micelles to vesicles of rod-coil poly(n-hexyl isocyanate-block-2-vinylpyridine) diblock copolymers. Author: Changez M, Kang NG, Koh HD, Lee JS. Journal: Langmuir; 2010 Jun 15; 26(12):9981-5. PubMed ID: 20359177. Abstract: The self-aggregation behavior of an amphiphilic rod-coil block copolymer of poly(n-hexyl isocyanate-block-2-vinylpyridine) (PHIC(189)-b-P2VP(228)) (f(P2VP) = 0.78, M(n) = 24.5K) in a tetrahydrofuran (THF)/water system was examined using dynamic light scattering (DLS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The presence of a certain amount of water in the THF-based polymer solution induced a morphological transition from spherical solid micelles to open mouth platelike vesicles. The size of the aggregates increased with an increase in water content in the mixed solvent of THF/water. In the range of 30-40% water, the polymer formed vesicles with an interdigitated architecture of poly(n-hexyl isocyanate) (PHIC) at the center of the membrane and with the poly(2-vinylpyridine) (P2VP) block forming the outer layers and pointing toward the solvent. However, at higher water contents, the thickness of the bilayer increased due to the rearrangement of the vesicle membrane from a flip-flop to a lamellar architecture. After the degradation of the PHIC from the vesicles at basic pH, hollow spherical aggregates remained stable. After removing the THF from the mixed solvent using dialysis, large-sized compound vesicles were formed.[Abstract] [Full Text] [Related] [New Search]