These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions.
    Author: Tupe RS, Tupe SG, Tarwadi KV, Agte VV.
    Journal: Metabolism; 2010 Nov; 59(11):1603-11. PubMed ID: 20359724.
    Abstract:
    Dietary zinc (Zn) status exerts a powerful influence on the degree of oxidative damage caused by free radicals. We examined the effect of dietary Zn variations with oxidative stress (OS) treatment on antioxidant status, liver function, and status of vitamins in male Wistar rats. Oxidative stress was generated by intraperitoneal injections of tert-butyl hydroperoxide; and dietary Zn variations done were Zn deficient, normal, and excess, with 8, 30, and 60 mg Zn per kilogram diet, respectively. After 21-day dietary regimen, the animals were killed; and plasma aspartate aminotransferase, alanine aminotransferase, hepatic antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), Zn, reduced glutathione, lipid peroxidation (LPO), and hepatic riboflavin, nicotinic acid, and ascorbic acid estimations were done. The alanine aminotransferase and aspartate aminotransferase levels were elevated in rats with OS and Zn-deficient diet, which were restored to normal levels with excess dietary Zn. Hepatic antioxidant enzymes and reduced glutathione levels were significantly decreased with concomitant increase in LPO due to OS induction in animals with Zn-deficient diet. Corresponding enhanced enzyme activities, higher hepatic Zn, and lowered LPO were observed in animals with normal- and excess-Zn diet. A dose-dependent increase in hepatic nicotinic acid accumulation was observed as the dietary Zn level increased from deficient to excess; however, there was no influence on riboflavin and ascorbic acid status. The results suggest that Zn may have a therapeutic potential in treatment of oxidative liver damage along with enhanced nicotinic acid absorption.
    [Abstract] [Full Text] [Related] [New Search]