These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New microsporidia parasitizing bark lice (Insecta: Psocoptera). Author: Sokolova YY, Sokolov IM, Carlton CE. Journal: J Invertebr Pathol; 2010 Jul; 104(3):186-94. PubMed ID: 20361976. Abstract: Two species of bark lice, Xanthocaecilius sommermanae Mockford and Polypsocus corruptus Hagen, collected in a canopy Malaise trap placed in Great Smoky Mountains National Park as part of a survey of the park's fauna, were found to be infected with microsporidia. Diagnosis was originally based on light microscopy, and was confirmed by PCR amplification and electron microscopy. This is the first record of microsporidia infection in the insect order Psocoptera. Four morphological spore types corresponded to four original SSUrDNA sequences (Genbank accession no. FJ865221-24), suggesting infection with four microsporidia species. Two of those species were examined by electron microscopy. We describe here one new genus and two new species based on morphological and sequence data: Antonospora psocopterae sp. n. with elongated diplokaryotic spores, 4.4+/-0.05 x 1.9+/-0.03 microm and Mockfordia xanthocaeciliae gen. n. sp. n. with ovocylindrical monokaryotic spores, 2.5+/-0.10 x 1.4+/-0.02 microm. A. psocopterae displayed high sequence (95%) and structural similarity with Antonospora scoticae, fell within a well supported dichotomy with A. scoticae inside the Antonospora-Paranosema clade in phylogenetic analyses by NJ, PS and ML. M. xanthocaeciliae did not exhibit much sequence or structural similarity with any of known microsporidia species, except Encephalitozoon spp. M. xanthocaeciliae fell within one clade with Encephalitozoon spp. in phylogenies and shared with encephalitozoons structural resemblance and about 80% of SSUrDNA sequence identity. The other two species were not described and provisionally were placed to the collective genus Microsporidium as Microsporidium sp. 1 and Microsporidium sp. 4 from bark lice because of insufficient morphological data. The finding that samples fixed and stored for months in propylene glycol ("antifreeze") are good enough for DNA sequence analysis and can be used for morphological analyses (if no better fixation alternatives are available), is promising for future surveys for microsporidia.[Abstract] [Full Text] [Related] [New Search]