These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Autonomic regulation of the heart during digestion and aerobic swimming in the European sea bass (Dicentrarchus labrax). Author: Iversen NK, Dupont-Prinet A, Findorf I, McKenzie DJ, Wang T. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):463-8. PubMed ID: 20362690. Abstract: The autonomic regulation of the heart was studied in European sea bass (Dicentrarchus labrax) during digestion and aerobic exercise by measuring cardiac output (Q), heart rate (f(H)), stroke volume (V(s)) and oxygen consumption (MO(2)) before and after pharmacological blockade by intraperitoneal injections of atropine and propranolol. The significant rise in MO(2) (134+/-14 to 174+/-14 mg kg(-)(1)h(-)(1)) 6h after feeding (3% body mass) caused a significant tachycardia (47.7+/-10.9 to 72.6+/-7.2 beats min(-)(1)), but only a small elevation of Q. MO(2) of fasting fish increased progressively with swimming speed (0.7-2.1BLs(-)(1)) causing a significant tachycardia (43+/-6 to 61+/-4 mL min(-)(1)kg(-)(1)) and increased Q but V(s) did not change. Inactive fish were characterized by a high vagal tone (98.3+/-21.7%), and the tachycardia during digestion and exercise was exclusively due to a reduction of vagal tone, while the adrenergic tone remained low during all conditions. Intrinsic f(H), revealed after double autonomic blockade, was not affected by digestion (71+/-4 and 70+/-6 min(-)(1), respectively), indicating that non-adrenergic, non-cholinergic (NANC) factors do not contribute to the tachycardia during digestion in sea bass.[Abstract] [Full Text] [Related] [New Search]