These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Micelle-vesicle transition in phospholipid-bile salt mixtures. A study by precision scanning calorimetry.
    Author: Spink CH, Lieto V, Mereand E, Pruden C.
    Journal: Biochemistry; 1991 May 21; 30(20):5104-12. PubMed ID: 2036377.
    Abstract:
    A systematic study of the micelle-vesicle transformation in phospholipid-bile salt mixtures using differential scanning calorimetry (DSC) indicates that the lipid undergoes a variety of changes in its thermal properties as mixed micellar solutions are diluted to concentrations at which vesicles form. In the experiments, micellar solutions of 50 mg/mL total lipid, containing sodium taurocholate (TC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), are diluted to concentrations corresponding to differing extents of aggregation of the TC with phospholipid. Turbidity and equilibrium dialysis measurements are used to establish boundaries between where micelles persist and where vesicles are formed and to determine the extent of aggregation of the TC with DPPC. At molar ratios Re of bound TC to DPPC greater than 0.3, micellar solutions are formed, while at Re less than 0.15 vesicles are evident upon dilution. As the transformation from micelles to vesicles occurs, the thermal transitions in the lipid change from broad, low Cp (max) peaks in the micelle region to multiple peaks of high cooperativity in regions of composition where lamellar structures and vesicles form. The DSC curves show that in the composition region corresponding to where bilayer micelles exist a new thermal phase forms, which has a melting transition near 32 degrees C, if the solutions are allowed to equilibrate for 48 h at 21 degrees C. Furthermore, at compositions between Re = 0 and 0.25, there is metastability in the lipid when equilibrated at 21 degrees C, but heating the lipid through the thermal transitions leads to reversible behavior.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]