These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology.
    Author: Mikhail AS, Allen C.
    Journal: Biomacromolecules; 2010 May 10; 11(5):1273-80. PubMed ID: 20369884.
    Abstract:
    Docetaxel (DTX), a chemotherapeutic agent, was coupled to the hydrophobic block of poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG-b-PCL) copolymers synthesized by metal free ring-opening polymerization. Synthesis of the copolymers and the copolymer-drug conjugate (PEG-b-PCL-DTX) were confirmed by (1)H NMR and GPC analyses. The PEG-b-PCL-DTX conjugates had a approximately 1:3 drug/copolymer ratio (w/w) and a low critical micelle concentration in aqueous solution (14 mg/L). Encapsulation of DTX in PEG-b-PCL-DTX micelles resulted in an 1840-fold increase in the aqueous solubility of the drug. Release of physically encapsulated DTX from PEG-b-PCL-DTX micelles was slower than drug release from PEG-b-PCL micelles due to the improved compatibility between DTX and the micelle core. Core-conjugated DTX was released over the course of one week indicating that PEG-b-PCL-DTX micelles have the capacity for sustained drug release in the absence of physically encapsulated drug. Importantly, conjugation of DTX to the core-forming block had a profound effect on the morphology of the copolymer aggregates.
    [Abstract] [Full Text] [Related] [New Search]