These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antisaccade performance in schizophrenia patients, their first-degree biological relatives, and community comparison subjects: data from the COGS study. Author: Radant AD, Dobie DJ, Calkins ME, Olincy A, Braff DL, Cadenhead KS, Freedman R, Green MF, Greenwood TA, Gur RE, Gur RC, Light GA, Meichle SP, Millard SP, Mintz J, Nuechterlein KH, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang MT, Turetsky BI, Tsuang DW. Journal: Psychophysiology; 2010 Sep; 47(5):846-56. PubMed ID: 20374545. Abstract: The antisaccade task is a widely used technique to measure failure of inhibition, an important cause of cognitive and clinical abnormalities found in schizophrenia. Although antisaccade performance, which reflects the ability to inhibit prepotent responses, is a putative schizophrenia endophenotype, researchers have not consistently reported the expected differences between first-degree relatives and comparison groups. Schizophrenia participants (n=219) from the large Consortium on the Genetics of Schizophrenia (COGS) sample (n=1078) demonstrated significant deficits on an overlap version of the antisaccade task compared to their first-degree relatives (n=443) and community comparison subjects (CCS; n=416). Although mean antisaccade performance of first-degree relatives was intermediate between schizophrenia participants and CCS, a linear mixed-effects model adjusting for group, site, age, and gender found no significant performance differences between the first-degree relatives and CCS. However, admixture analyses showed that two components best explained the distributions in all three groups, suggesting two distinct doses of an etiological factor. Given the significant heritability of antisaccade performance, the effects of a genetic polymorphism is one possible explanation of our results.[Abstract] [Full Text] [Related] [New Search]