These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain.
    Author: Xi S, Guo L, Qi R, Sun W, Jin Y, Sun G.
    Journal: J Biochem Mol Toxicol; 2010; 24(6):368-78. PubMed ID: 20376865.
    Abstract:
    To better understand the effect of arsenic on central nervous system by prenatal and early life exposure, the oxidative stress and neurotransmitter metabolic enzymes were determined in offspring rats' brain cortex and hippocampus. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic (As)-containing water as the dams. The level of malondialdehyde in 100 mg/L As-exposed pup's brain on PND 0 and cortex on PND 28 and 42 were significantly higher than in the control group (p < 0.05). Reduced glutathione (GSH) levels showed a clear decreasing trend in pup's cortex and hippocampus on PND 42. Activity of acetylcholinesterase was significantly higher in 100 mg/L As-exposed pup's hippocampus than in control group on PND 28 and 42. mRNA expression of glutamate decarboxylase (GAD(65) and GAD(67)) in 100 mg/L As-exposed pup's cortex or hippocampus on PND 28 and 42 were significantly higher than in control (p < 0.05). These alterations in the neurotransmitters and reduced antioxidant defence may lead to neurobehavioral and learning and memory changes in offspring rats.
    [Abstract] [Full Text] [Related] [New Search]