These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tissue-specific expansion of uridine pools in mice. Effects of benzylacyclouridine, dipyridamole and exogenous uridine. Author: Darnowski JW, Handschumacher RE, Wiegand RA, Goulette FA, Calabresi P. Journal: Biochem Pharmacol; 1991 Jun 15; 41(12):2031-6. PubMed ID: 2039551. Abstract: The concentration of uridine (Urd) in murine tissues appears to be controlled by Urd catabolism, concentrative Urd transport, and the non-concentrative, facilitated diffusion of Urd. Previous reports document the tissue-specific disruption of these processes, and subsequently intracellular pools of free Urd in mice, by the administration of exogenous Urd (250 mg/kg) or the Urd phosphorylase (EC 2.4.2.3; uracil:ribose-1-phosphate phosphotransferase) inhibitor 5-benzylacyclouridine (BAU) (240 mg/kg). We now report the effect of combinations of BAU (120 mg/kg, p.o.), the nucleoside transport inhibitor dipyridamole (DP) (25 mg/kg, i.p.), and exogenous Urd (250 mg/kg, i.v.) on Urd pools in mice. This dose of BAU increased Urd pools 2- to 6-fold, in a tissue-specific manner, for up to 5 hr. DP increased Urd pools 3-fold in spleen, over a 4-hr period, but did not affect other tissues. Administration of BAU 1 hr prior to exogenous Urd resulted in a 50- to 100-fold expansion of tissue normal after 6 hr. Administration of DP 1 hr prior to exogenous Urd caused a tissue-specific 40- to 100-fold increase in Urd pools which, except in spleen, returned to normal within 2 hr. The marked additive effects of these combinations were in contrast to those obtained following the administration of BAU 1 hr prior to DP. This regimen increased Urd pools from 4- to 9-fold, in a tissue-specific manner. In addition, Urd pools remained elevated for up to 9 hr, except in spleen where the Urd concentration was elevated for up to 15 hr. Analysis of enzyme activities indicated that DP does not enhance the inhibitory effect of BAU against murine liver Urd phosphorylase. However, DP did inhibit plasma clearance of BAU, and this effect may partially explain the apparent synergistic effect of this combination. In spite of the prolonged and dramatic expansion of tissue Urd pools produced by BAU + DP, the total Ura nucleotide content in spleen, gut and colon tumor 38 (CT38) increased by less than 70% over a 12-hr period following administration of this combination. These findings are discussed in light of their biochemical and therapeutic implications.[Abstract] [Full Text] [Related] [New Search]