These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Template-assembled synthetic G-quadruplex (TASQ): a useful system for investigating the interactions of ligands with constrained quadruplex topologies.
    Author: Murat P, Bonnet R, Van der Heyden A, Spinelli N, Labbé P, Monchaud D, Teulade-Fichou MP, Dumy P, Defrancq E.
    Journal: Chemistry; 2010 May 25; 16(20):6106-14. PubMed ID: 20397247.
    Abstract:
    A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular-like G-quadruplex motif 1 (parallel G-quadruplex conformation), an intramolecular G-quadruplex 2, and a duplex DNA 3 have been designed and developed. The method is based on the concept of template-assembled synthetic G-quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G-quadruplex conformation. Various known G-quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a pi-stacking binding mode showed a higher binding affinity for intermolecular-like G-quadruplexes 1, whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2. In addition, the present method has also provided information about the selectivity of ligands for G-quadruplex DNA over the duplex DNA. A numerical parameter, termed the G-quadruplex binding mode index (G4-BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G-quadruplex 1 against intramolecular G-quadruplex 2. The G-quadruplex binding mode index (G4-BMI) of a ligand is defined as follows: G4-BMI=K(D)(intra)/K(D)(inter), where K(D)(intra) is the dissociation constant for intramolecular G-quadruplex 2 and K(D)(inter) is the dissociation constant for intermolecular G-quadruplex 1. In summary, the present work has demonstrated that the use of parallel-constrained quadruplex topology provides more precise information about the binding modes of ligands.
    [Abstract] [Full Text] [Related] [New Search]