These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Corticosteroid side-chain oxidations--I. Structural effects on the excreted isotope ratios of 4-14C- and 21-3H-labelled corticosteroid metabolites in rabbit urine.
    Author: Senciall IR, Rahal S, Roberts R.
    Journal: J Steroid Biochem Mol Biol; 1991 May; 38(5):629-37. PubMed ID: 2039755.
    Abstract:
    The metabolic fates of 4-14C- and 21-3H-labelled corticosteroids have been investigated in the rabbit by analysis of the normalized isotope ratios of neutral and acidic metabolites excreted in the urine. Isotope ratios of excreted radioactivity declined in the order cortisol (F) greater than corticosterone (B) greater than 11-desoxycortisol (S) greater than deoxycorticosterone (DOC). Steroid acids, isolated in alumina fraction C, represented 19.0, 15.0, 9.7 and 2.7% of the doses of DOC, B, S and F, respectively, and the isotope ratios declined in the order F greater than B greater than S greater than DOC. HPLC of steroid acid methyl ester derivatives indicated generally low isotope ratios for DOC and S steroid acids, consistent with complete side-chain oxidation to 20-oxo-21-oic acids and/or 17-carboxylic acids. Several B metabolite methyl esters peaks also exhibited low isotope ratios, but both B and F metabolites gave methyl esters that retained significant tritium consistent with the presence of 20-hydroxysteroid acids. The 21-hydroxy-steroid metabolite fractions had isotope ratios of F = S greater than B greater than DOC. HPLC showed that 20-oxo (tetrahydro) metabolites of B and F had reduced isotope ratios unlike the C-20 reduced (hexahydro) metabolites of DOC and S. It may be concluded that the metabolic fate of the corticoid side-chain in the rabbit is dependent on the steroid structure and may result in the excretion of both 20-oxo and 20-hydroxysteroid acids.
    [Abstract] [Full Text] [Related] [New Search]