These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of the dopamine receptor system in adult rhesus monkeys exposed to cocaine throughout gestation. Author: Hamilton LR, Czoty PW, Gage HD, Nader MA. Journal: Psychopharmacology (Berl); 2010 Jul; 210(4):481-8. PubMed ID: 20401746. Abstract: RATIONALE: Cocaine use during pregnancy is associated with alterations in the dopamine (DA) system in the fetal brain. However, little is known about the effects of prenatal cocaine exposure on the postnatal dopaminergic system. OBJECTIVES: The objective of the study was to examine DA receptor function in adult monkeys that were prenatally exposed to cocaine. MATERIALS AND METHODS: Male and female rhesus monkeys (approximately 13 years old) that had been prenatally exposed to cocaine (n = 10) and controls (n = 10) were used in all studies. First, DA D2-like receptor availability was assessed using positron emission tomography and the D2-like receptor radiotracer [(18)F]fluoroclebopride (FCP). Next, D(3) receptor function was assessed by measuring quinpirole-induced yawning (0.03-0.3 mg/kg). Finally, D1-like receptor function was examined by measuring eye blinking elicited by the high-efficacy D1-like receptor agonist SKF81297 (0.3-3.0 mg/kg). RESULTS: There were no differences between groups or sexes in D2-like receptor availability in the caudate nucleus, putamen or amygdala. However, quinpirole elicited significantly more yawns in prenatally cocaine-exposed monkeys compared with control monkeys. A significant correlation between gestational dose of cocaine and peak effects of quinpirole was observed. In all monkeys, administration of SKF81297 elicited dose-dependent increases in eye blinks that did not differ between groups. CONCLUSIONS: These findings suggest that prenatal cocaine exposure can have long-term effects on DA D(3) receptor function in adults.[Abstract] [Full Text] [Related] [New Search]