These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Author: Michels PA, Marchand M, Kohl L, Allert S, Wierenga RK, Opperdoes FR. Journal: Eur J Biochem; 1991 Jun 01; 198(2):421-8. PubMed ID: 2040303. Abstract: Trypanosoma brucei contains two isoenzymes for glyceraldehyde-3-phosphate dehydrogenase: one enzyme resides in a microbody-like organelle, the glycosome; the other is found in the cytosol. Previously we have reported the characterization of the gene for the glycosomal enzyme [Michels, P. A. M., Poliszczak, A., Osinga, K. A., Misset, O., Van Beeumen, J., Wierenga, R. K., Borst, P. & Opperdoes, F. R. (1986) EMBO J. 5, 1049-1056]. Here we describe the cloning and analysis of the gene that codes for the cytosolic isoenzyme. The gene encodes a polypeptide of 330 amino acids, with a calculated molecular mass of 35440 Da. The two isoenzymes are only 55% identical. The cytosolic glyceraldehyde-3-phosphate dehydrogenase differs from the glycosomal enzyme in the following respects: (a) its subunit molecular mass is 3.4 kDa smaller due to the absence of insertions and a small C-terminal extension which are unique to the glycosomal protein; (b) the cytosolic enzyme has a lower pI (7.9, as compared to 9.3 for the glycosomal isoenzyme), which is due to a reduction in the excess of positively charged amino acids (the calculated net charges of the polypeptides are +2 and +11, respectively). We have compared the amino acid sequences of the two T. brucei glyceraldehyde-3-phosphate dehydrogenases, with 24 available sequences of the corresponding enzyme of other organisms from various phylogenetic groups. On the basis of this comparison an evolutionary tree was constructed. This analysis strongly supports the theory that T. brucei diverged early in evolution from the main eukaryotic branch of the phylogenetic tree. Further, two separate branches for the lineages leading to Trypanosoma are inferred from the amino acid sequences, suggesting that the genes for the two glyceraldehyde-3-phosphate dehydrogenases of the trypanosome are distantly related and must have been acquired independently by the trypanosomal ancestor. The branching determined with the glycosomal enzyme precedes that found with the cytosolic enzyme. The available data do not allow us to decide which of the two genes originally belonged to the trypanosome lineage and which entered the cell later by horizontal gene transfer.[Abstract] [Full Text] [Related] [New Search]