These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An antiserum (ES1) against a particulate form of extracellular matrix blocks the transition of cardiac endothelium into mesenchyme in culture. Author: Mjaatvedt CH, Krug EL, Markwald RR. Journal: Dev Biol; 1991 Jun; 145(2):219-30. PubMed ID: 2040370. Abstract: The epithelial-mesenchymal transition of cardiac endothelium is a critical developmental event in the formation of valvular and septal anlagen. We have demonstrated previously that this event can be mimicked in culture by treating atrioventricular canal (AV) endothelium with EDTA-soluble proteins extracted from embryonic heart tissue. This activity was fractionated by ultracentrifugation of the EDTA extract, indicating that the critical proteins existed as a multicomponent complex. Based on these results we propose that: (1) the in vitro particulates in EDTA extracts correspond to an observed particulate form of extracellular matrix within the myocardial basement membrane (MBM) of mesenchyme-forming regions and (2) one or more of the proteins in the MBM particulates function to elicit the epithelial-mesenchymal transition. To test these hypotheses we utilized an antiserum, termed ES1, prepared against EDTA-extractable particulates from embryonic chick hearts. Both ES1 and an anti-fibronectin monoclonal antibody (M3H) co-localized in situ to particles within the MBM; however, no ES1 reactivity towards fibronectin could be detected by ELISA or immunoblot analysis. The ES1-positive MBM particulates were removed by extraction with EDTA, but not with PBS, indicating a divalent cation-mediated association of the constituent proteins. ES1 antibodies recognized two major (28 and 46 kDa) and three minor (93, 109, and 180 kDa) proteins on immunoblots of EDTA-extractable proteins. When tested in culture, ES1 antiserum inhibited the formation of mesenchyme from AV endothelium in a dose-dependent manner, while M3H did not. These results are consistent with an active role for one or more of the ES1 antigens in initiating the formation of AV mesenchyme. The localization of ES1 antigens to the extracellular matrix at other dynamic interfaces, e.g., ectoderm/neural tube and limb bud ectoderm/mesoderm, point to a potentially general importance of ES1 antigens in mediating similar developmental interactions.[Abstract] [Full Text] [Related] [New Search]